

Crop Sciences college of agricultural, consumer & environmental sciences Illinois Fertilizer and Chemical Association Spring Webinar March 24, 2025

Spring 2025 Nutrient Management Considerations

John Jones

Assistant Professor of Agronomy & Soil Fertility Extension Specialist

Department of Crop Sciences, University of Illinois

Rapid, local swings in soil moisture since 2024 harvest

28

24

20

16

12

8

Precipitation (in) 11/23/2024 - 3/22/2025

https://hprcc.unl.edu/maps.php?map=ACISClimateMaps

Illinois Extension

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Departure from Normal Precipitation (in) 11/23/2024 - 3/22/2025

0.5

0.1

We don't entirely know how pulses of warm soil affect nitrification (in fall or spring)

Mav 5

Illinois State Climatologist Office, www.isws.illinois.edu Illinois State Water Survey, Prairie Research Institute University of Illinois at Urbana-Champaign

Illinois Extension

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

2024 Central/Northern IL Nitrogen rate trials Soybean-Corn

- Pre-2024 data suggested a 181 lb-N/a optimum N rate
- 2024 optimum N rates ranged from 137 to 267 lb-N/a
- Yield at optimum N ranged from 201 to 297 bu/a
- A tale of two response types for these 2024 trials

• At MRTN 🔺 Optimum

2024 Southern IL Nitrogen rate trials

Soybean-Corn, Southern IL

- Pre-2024 data suggested a 200 lb-N/a optimum N rate (154 trials)
- 2024 optimum N rates ranged from 157 to 206 lb-N/a
- Yield at optimum N ranged from 185 to 249 bu/a
- Overall a year with "clean" responses to nitrogen, clear trends.

△ Optimum • At MRTN

Illinois Extension

N rate verification trials (2 N rates) in 2024

N Strip Trials, 2024 Avg N rates: 189 med/231 high

Yield response, bu
\$ response (\$0.50/lb N; \$4.25/bu)

2023 N rate trials

N rate calculator: https://www.cornnratecalc.org/

Website updates being finalized with 2013 to 2024 trial data

Select State *		Select Rotatio	on *	
Illinois	~	Corn following soybean		
Select Region				
South	~			
Set Corn and Nitrogen Prices *				
UAN (32% N)	~	356	(\$/Ton)	
	Nitrogen Price	0.56	(\$/lb N)	
	Corn Price	4.00	(\$/bu)	

N rate calculator: https://www.cornnratecalc.org/

State : **Illinois** Region : **South** Number of sites : **140** Rotation : **Corn following soybean**

and a second			
	CORN NITROGEN		
Labertonia (17-	RATE CALCULATOR		
Finding t	he Maximum Return To N and Most I Regional (Corn Belt) Approach to Nitrogen Rat	Profitable N Rate te Guidelines	
With the state		- Commun	
This web site provides a process to calculate e directly from recent N rate research data. The n	conomic return to N application with different nethod used follows a regional approach for d several Corn Belt states.	it nitrogen and corn prices and to find profital determining corn N rate guidelines that is impl	ble N rates lemented in
a service of the serv	B & B B B A B A B A B B B B B B B B B B	CONTRACTOR OF	a protection

Website updates being finalized with 2013 to 2024 trial

data

4.00	Corn Price (\$/bu):
0.14	Price Ratio:
188	MRTN Rate (lb N/acre):
173 - 200	Profitable N Rate Range (lb N/acre):
\$316.96	Net Return to N at MRTN Rate (\$/acre):
97%	Percent of Maximum Yield at MRTN Rate:
587	UAN (32% N) at MRTN Rate (lb product/acre):
\$105.28	UAN (32% N) Cost at MRTN Rate (\$/acre):

N Rate, lb N/acre

Nitrogen Price (\$/lb):

0.56

Return to N Select Rotation * Select State * Gross Return to N Net Return to N Corn following soybean Fertilizer N Cost Profitable N Rate Range Illinois \sim \mathbf{v} 450 Select Region 400 South \sim 350 MRTN at 188lb N/acre Return to N, \$/acre 300 Set Corn and Nitrogen Prices * 250 (\$/Ton) UAN (32% N) \sim 356 200 150 (\$/lb N) **Nitrogen Price** 0.56 100 50 (\$/bu) Corn Price 4.00 50 100 150 250 200 J.D. Jones | IFCA 2025 Spring Webinar

As we update & refine N guidance...

- 1. Does yield level (historic or target) have relevance?
 - Increasing yield levels does equate to larger total nitrogen uptake in aboveground biomass
- 2. What is the finest spatial scale can we achieve realistic expectations of predicting corn yield response to N fertilizer?
 - Region, crop reporting district, county, soil association or family level?
- 3. Can we separate out different N source, timing, and placement strategies? Tillage system and/or cover crop use?
 - Some components are more consistently different (fall vs. spring) compared to others (split at planting & V6 compared to V8)

With well-structured and representative field (on-farm) research we can get close to many refinement goals. This requires collaborative efforts.

Optimum N rates for yield ranges

(2013-2024, all Illinois corn N rate trials)

Total N uptake supplied by the soil

(2013-2024, all Illinois corn N rate trials)

Yield at optimum N rate over time – Central/North IL

Yield at optimum N rate over time – Southern IL

(2006-2024; soybean-corn)

We shifted to only using 2013 to 2024 trials (30-50 will be run statewide in 2025)

Only yield with little N points to a (weak) relationship with optimum N rate

Fall vs. spring applied anhydrous, 2013-2020

Fall application led to a 21 lb-N/a higher optimum N rate

MRTN rate as N price varies

Corn at \$4.50; N price as indicated; 2013-2024 supporting data Profitable ranges are MRTN rate +/- 12-14 lb

		<u>NH</u> 3		<u>UAN (32%)</u>	
IL Region	Rotation	\$775 (0.47)	\$350 (0.55)	\$375 (0.59)	\$400 (0.63)
North	Soy-Corn	189	182	179	176
	Corn-Corn	197	188	184	180
Central	Soy-Corn	186	179	176	174
	Corn-Corn	200	196	192	189
South	Soy-Corn	207	200	199	195

Southern IL data shows stronger responses to N and is less affected by price compared to north and central IL

Illinois corn Maximum Return to N ranges for 2025

Numbers below at N:corn price ratio of 1:10 (\$0.45/lb N; \$4.50/bu corn); 2013-2024 data

Soybean-Corn

Illinois corn Maximum Return to N ranges for 2025

Numbers below at N:corn price ratio of 1:10 (\$0.45/lb N; \$4.50/bu corn); 2013-2024 data

Soybean-Corn

Important points for P&K applications in 2025

- How soil test reports are interpreted (low vs. high testing) should not change as prices become unfavorable
- Critically assessing what are your high to very high testing fields can allow for cost savings or shift applications to those testing very low to optimum.
- Wherever your soil test are at, ROI to fertilization needs to be stressed.
- Know your level from last sampling and realistic removal values if fertilizing based on removal
- Be cautious if working with 2020 and 2022 sample data (dry fall)

Soil sampling ROI generally increase with tight margins

Illinois Extension

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIG

Jones (2023)

ROI to P fertilizer as grain prices change

Silt loam to silty clay loam soils; \$0.75/lb P₂O₅ (\$690/T DAP or \$780/T MAP)

- The breakeven point should be near the optimum STP range at reasonable prices
- Price considerations should adjust P fertilizer rates, not soil-test interpretation

Jones (2025)

ROI to P fertilizer as fertilizer price changes

Silt loam to silty clay loam soils

Jones (2025)

ROI to K fertilizer as grain prices change Silt loam to silty clay loam soils; \$0.50/lb K₂O (\$600/T 0-0-60)

While K responses supported high ROI, breakeven responses to grain prices did not suggest a need to shift target STK, instead keep focus on the range Jones (2025)

ROI to P fertilizer as fertilizer price changes

Silt loam to silty clay loam soils

Grain removal values (applied to maintenance soil-test P&K ranges)

Crop	Moisture	Pounds per Bushel		
		P_2O_5	K ₂ O	
Corn	15%	0.37	0.23	
Soybean	13%	0.75	1.15	
Wheat	13.5%	0.46	0.24	

Soil moisture and soil K status

As drying time increases, measured nutrient concentrations change – K example

Plano silt loam 0 to 6-inch sample

Illinois Extension

Scenarios where in-season K is benefitial?

In-season K (as potassium acetate) to compensate for low testing soils?

Potassium acetate trial at two sites in 2023

- Only significant responses to in-season K in LOW TESTING soils
- Maintaining optimum/maintenance or higher would have been as effective at avoiding K deficiencies
- No "rescue" treatments are effective. Accumulation of organic acids has already burned the tissue.

Spring N management for wheat

- First spring applications are currently being applied (or already finished)
- Watch following 48-hour conditions for potential N loss
- Current wheat & UAN prices: one bushel of wheat "buys" about 11 pounds of N

	Amt				N that 1 bushel of wheat will "buy"		
	Organic	Very high (>13 lb)	High (9-13 lb)	Medium (5–9 lb)	Low (<5 lb)		
Soil situation	matter	ter lb N/A		/A			
Low in capacity to supply nitrogen: inherently low in organic matter (forested soils)	<2%	150	120-150	90–120	60–90		
Medium in capacity to supply nitrogen: moderately dark-colored soils	2-4%	100-120	80-100	60-80	40-60		
High in capacity to supply nitrogen: deep, dark-colored soils	>4%	70–90	50-70	30–50	30		
Rates assume no more than 30 lb of fall-applied N and spring application at greenup.	C	Chapter 9 I	llinois Agr	onomy Ha	andbook		

Table 9.2. Recommended spring nitrogen application rates for wheat.

Effects of system variables on winter wheat nitrogen demand and yield N demand (EONR) Yield at EONR

(WI research)

Ongoing/future wheat N, P, and S trials

 Winter wheat (in double-crop systems) response to nitrogen rate, timing, phosphorus source, and sulfur rate (3 sites planted fall 2024)

Pictures taken 3/16; Piatt County

Soil-test S does not inform much, but it is more often testing low

- North American Soil Test Summary (2020)
- From routine respective depths for each state
- Soil or early plant tissue S does not predict yield response to S well
- Rely on confirming deficiencies and target those fields

Illinois Extension

2025 on-farm research efforts statewide

If interested in collaborating, please reach out

- 1. On-farm corn N rate trials focus on yield, soil N, and plant N
- 2. Soil-test P & K calibration and spatial variability
- 3. Precision N management
- 4. Corn nitrogen x sulfur/potassium 2 or 3 S/K rates x 6 N rates
- 5. Winter wheat/soybean N rate trials N rate, timing, and P source

Thank you!

John Jones jones86@illinois.edu; 920-306-9629

Emerson Nafziger, University of Illinois Dan Schaefer, Illinois Fertilizer & Chemical Association

John Pike, Pike Ag, LLC

NREC

ILLINOIS Crop Sciences

COLLEGE OF AGRICULTURAL, CONSUMER & ENVIRONMENTAL SCIENCES

37